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INTRODUCTION

Cylindrical claddings are one of the most fre�
quently encountered structural elements in different
technical applications, particularly the fuel elements
of nuclear reactors [1, 2]. Their function is to contain
fission products and interstitial impurities as the
nuclear fuel burns out. The structural stability of the
claddings is determined by the levels and distribution
patterns of their internal stresses. The latter include
temperature, concentration, and residual stresses
caused by the nonuniform distribution of temperature,
the concentration of doping elements, and the density
of structural defects (e.g., edge dislocations). Internal
stresses greatly influence the kinetics of diffusion pro�
cesses, due to the elastic interaction between point
defects with the first invariant of stress tensor. The
interaction potential (binding energy) is generally
determined by the known relationships [3]

(1)

where  is the first invariant of the internal stress ten�
sor, and δυ is the change in crystal volume caused by
the introduction of impurity atoms. When 
(tensile stress) and  (impurity atoms raise the
crystal lattice parameter), potential V assumes a nega�
tive value. This corresponds to the impurity atoms
being attracted to the region of tensile stress and its
displacement from the region of compression stress. If
σll > 0 and δυ < 0 (impurity atoms lower the crystal lat�
tice parameter), the diffusion flow of impurity atoms
changes: Impurities of short atomic radius migrate to
the region of compressive stress and are forced out of
the region of tensile stress. The stratification of the
solid solution containing doping elements with differ�
ent atomic radii thus occurs.

The diffusion flow of impurity atoms through
cylindrical cladding characterizes its diffusive perme�
ability. This characteristic of the system is largely
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dependent on the distribution of internal stresses of
different physical natures. In the linear theory of con�
tinuous medium mechanics, the superposition princi�
ple is observed: Tensor components of different kinds
of stresses allow algebraic summation. This means that
internal stresses can be controlled to vary the diffusive
permeability of cylindrical claddings, since the inter�
nal stresses in the cladding have different signs with
identical coordinate dependence. Among interstitial
impurities, hydrogen atoms dominate because of the
high diffusion mobility of hydrogen atoms over a wide
range of temperatures. For example, at room temper�
ature the diffusion coefficient for hydrogen atoms is
greater by several orders of magnitude than that of sub�
stitutional impurities and other interstitial impurities;
we may therefore consider the hydrogen permeability
of claddings in the presence of frozen nonuniform
concentrations of other doping elements. The aim of
this work was to study means of controlling internal
stresses and thus the hydrogen permeability of cylin�
drical claddings. The results from theoretical analysis
are used as an example of numerical (computer aided)
simulation of diffusion processes. This covers systems
in which the complex coordinate dependence of inter�
nal stresses does not allow us to obtain an analytical
solution to diffusion kinetics equations.

FIRST INVARIANT 
OF THE INTERNAL STRESS TENSOR

The hydrogen permeability of a cylindrical clad�
ding depends on the level and pattern of the distribu�
tion of internal stresses of different natures. They
result in the diffusive redistribution of hydrogen
atoms. The latter migrate to tensile stress regions and
are forced out of the regions of compressive stress.
Such behavior is due to the crystals’ lattice parameter
tending to grow when interstitial impurities (e.g.,
hydrogen atoms) are present.
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Among internal stresses, temperature stresses play
a leading role. In advanced technologies, structural
elements operate at elevated temperatures. The diffu�
sion of doping elements depends exponentially on this
parameter. The physical mechanism of thermal stress
is well understood. When the temperature is nonuni�
form, the hotter region expands while cooler regions
resist expansion. The former are thus in a compressed
state, being unable to expand according to the temper�
ature field. Cooler regions of the material are in a dif�
ferent position: hot regions tend to stretch in excess of
temperature expansion, so cooler regions of the material
are in a state of tension. The simplicity of this physical
picture is helpful in analyzing the distribution pattern of
thermal stress for a particular temperature field. Diffu�
sion processes occur much more slowly than thermal
processes, so we limit our consideration of the problem of
diffusion kinetics in cylindrical claddings to a case of sta�
tionary temperature distribution:

(2)

where r0 and R are the internal and external radii of the
cylindrical cladding, and T1 and T2 are the tempera�
tures of the internal and external surfaces (T1 > T2).
The temperature distribution has a logarithmic depen�
dence on the radial coordinate. A similar coordinate
dependence holds for temperature stresses as well. The
first tensor invariant takes the form (state of plane
deformation) [4]

(3)

where α is the thermal expansion coefficient; μ is the
shear modulus; and ν is the Poisson ratio. Other sym�
bols correspond to those used earlier. The diffusion of

hydrogen atoms depends on the gradient of 
so constant relationships (3) vanish upon differentia�
tion. However, the constants in expression (3) must be
considered when determining the equilibrium con�
centrations of hydrogen atoms at area boundaries.

A nonuniform distribution of impurity atoms gives
rise to concentration stresses. These are determined in
a manner similar to the one for temperature stresses.
The coefficient of thermal expansion is set to corre�
spond to the variation in the crystals lattice parameter
per unit concentration of impurity atoms. Renormal�
ization of the constants in thermoelasticity equations
makes it easy to write the first invariant of the concen�
tration stress tensor:
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where  is the concentration deformation
similar to temperature deformation  C1, C2

are concentrations of impurity atoms on the internal
and external cladding surfaces  Other sym�
bols have the earlier meanings. Concentration stresses
affect the diffusion kinetics of hydrogen atoms. This is
important at intermediate temperatures, where the
nonuniform concentration of substitutional impurities
remains unchanged. At elevated temperatures, the
nonuniform concentration diffuses and the stresses
disappear.

Residual stresses arise during the fabrication and
operation of products. If the magnitude of shear stress
under an external load (force or temperature) exceeds
the material’s yield strength, a plastic flow begins in a
local region. When the external load is relieved, the
material remains in a stressed state. Such internal
stresses are now known as residual stresses. In cylin�
drical cladding, these stresses are created in the fol�
lowing way: A doubly connected region is converted to
a singly connected region through the formation of a
radial gap. The two surfaces of the gap acquire a slight
angular disorientation. The gap in the cladding is filled
by additional material. The system again becomes
doubly connected, but this time with internal stresses.
The internal surface is in a stretched state, and the
external surface is in a compressed state. The first
invariant of the residual stress tensor also has a loga�
rithmic dependence on the radial coordinate [4]:

(5)

where ω is the turning angle of the cladding gap’s
edges (measured in radians). Other symbols are iden�
tical to those used above. Note that relation (5) is iden�
tical to the first invariant of the stress tensor of wedge
disclinations (ω being the Frank vector module) [5].

Analysis of relations (3), (4), and (5) shows that
they have identical logarithmic dependences on the
radial coordinate. This difference is characteristic only
of constants that characterize the nature of internal
stresses. The hydrogen permeability of the cylindrical
cladding depends on all types of internal stress. They
are described by a second order tensor and are
included in diffusion kinetics equations with different
signs. The laws of tensor algebra in a linear space allow
us to control the internal stresses in a cylindrical clad�
ding in order to change its hydrogen permeability.

DIFFUSION KINETICS 
AND HYDROGEN PERMEABILITY

Allowing for internal stresses of different physical
natures, the diffusion kinetics of hydrogen atoms is
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described by parabolic�type equations under the
appropriate initial and boundary conditions [3]:

(6)

where D is the coefficient of hydrogen atom diffusion;
k is the Boltzmann constant; Т is the absolute temper�
ature; V is the bonding energy of hydrogen atoms
under different types of internal stresses; and Cp is the
equilibrium concentration of hydrogen atoms on the
cladding’s internal surface. Other symbols remain the
same as above. The physical sense of the initial and
boundary conditions of problem (6) is fairly obvious.
At the initial moment in time, the concentration of
hydrogen atoms in the cylindrical cladding is zero.
The same concentration is observed on the external
surface of the considered system. Physically, this
means that hydrogen atoms leave the external surface
the moment they arrive on it. This condition allows us
get to the heart of the cladding’s hydrogen permeabil�
ity. On the internal surface, an equilibrium concentra�
tion of hydrogen atoms is maintained that generally

depends on the magnitude of  in the near�surface
region. Below, we use relations (3), (4), and (5) and
simplify problem (6)

(7)

Constants α1, α2, and α3 characterize the ratio of the
bonding energy between hydrogen atoms under inter�
nal stresses to the energy of thermal motion

(8)

All designations are the same as the ones used above.
The effect of internal stresses of different physical

natures can be considered by introducing a dimen�
sionless constant that can easily be calculated. Most
important: they can be summed algebraically within
the linear theory of solid media mechanics if we
employ the superposition principle. This allows us to
control the internal stresses when studying the hydro�
gen permeability of cylindrical claddings. If the sum of
the dimensionless constants in the problem is much
less than unity, the internal stresses act as weak pertur�
bations of the main diffusive flow of hydrogen atoms.
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An alternative case corresponds to the dominant role
of internal stresses. Estimates show that values of the
dimensionless constants are close to unity with slight
deviations in one direction or another. By way of illus�
tration, let us consider a cylindrical cladding based on
Zr–Sn: R/r0 = 1.1; α = 10–5 K–1; (T1 – T2) = 102 K;
μ = 4 × 1010 Pa; ν = 0.3; kT = 4.1 × 10–21 J; δυ = 3 ×
10–30 m3; β = 0.1; ω = 0.16 rad; (C1 – C2) = 1.3 ×
10⎯2 (at).

Calculations show that under the given conditions,
the numerical values of the dimensionless constants
are close to unity. This means that the effects of the
concentration gradient and the internal stresses on the
hydrogen permeability of a cylindrical cladding are
comparable. The energy of the thermal motion of
hydrogen atoms correlates to the average cladding
temperature. It can exceed the difference in tempera�
ture between surfaces. All other conditions being
equal, the numerical value and the sign of dimension�
less relations (8) depend on  ; and ω.
Combining these quantities allows us to vary the sec�
ond term in the right�hand side of Eq. (7) and thus
control the diffusion kinetics and hydrogen perme�
ability of the cladding. Solving Eq. (7) for arbitrary
constants poses no mathematical problems. To clarify
the physics of the processes in question, however, let us
consider two cases of the distribution of internal
stresses in a cylindrical cladding. The first of these cor�
responds to the resulting compression stresses on the
internal surface, which change smoothly into tensile
stresses at the external boundary; in our mathematical
formalism, this is equivalent to altering Eq. (7) when

(9)

The internal stresses affect the formation of the field of
hydrogen atom concentration: the concentration pro�
file in the cladding is formed according to relationship
for a band. This behavior has a simple physical expla�

nation: When , term  corre�

sponds to the source of hydrogen atoms. The latter are
expelled from the internal near�surface region and are

drawn to the external region. When , the rate of

variation in hydrogen atom concentration  under iden�

tical conditions is indeed higher for  = 1,
relative to their zero value (ignoring internal stresses).
The second case describes the opposite situation:
stretching on the internal surface changes to compres�
sion on the external surface; i.e.,  = –1.
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The mathematical formulation of problem (7)
becomes

(10)

Again, internal stresses affect the formation of the field
of hydrogen atom concentration: the concentration
profile in the cylindrical cladding obeys the same law

as in a spherical cladding. When , term

 corresponds to a sink for hydrogen

atoms. The rate of concentration profile formation

slows, as follows directly from (7). When , the

rate of change in hydrogen atom concentration  for

 = –1 is indeed slower than with the zero
sum of dimensionless constants.

We write the known solutions to Eqs. (9) and (10)
in the form

(11)

where  and  are the equilibrium concentrations of
hydrogen atoms at the cladding’s internal boundary.
They depend exponentially on interaction potential V
and under the given conditions have the form

(12)

where  is the average concentration of hydrogen
atoms. Internal stresses with different signs alter the
equilibrium concentration of hydrogen atoms. When

 = 1, dilatation on the internal surface is

negative (compression stress) and so  i.e., the
equilibrium concentration is less than the correspond�
ing value when there is no stress. Physically, this means
that the surface effect (the drop in equilibrium con�
centration) competes in forming the concentration pro�
file according to Eq. (9). When  = –1,
positive dilatation (tensile stress) makes the equilib�
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rium concentration  higher than С0; i.e., 
This means that the slowing of the rate of concentra�
tion profile formation according to (10) is compen�

sated for by an increase in 

In accordance with expressions (11a) and (11b),
the formation of hydrogen atom concentration fields
proceeds in an identical manner over time. This fol�
lows from the theory of equations of mathematical
physics, since Eq. (10) can be reduced to Eq. (9) sim�
ply by changing the variables [5]. However, the coordi�
nate dependence of the hydrogen atom concentration
and its corresponding rate of change are lower for
(11b) than for (11a). We then determine the diffusion
flows of hydrogen atoms through the external surface
that characterize the hydrogen permeability of a cylin�
drical cladding:

(13)

The ratio of these flows characterizes the hydrogen
permeability of a cylindrical cladding, depending on
the sign of internal stresses:

(14)

For thin cylindrical claddings , this ratio
takes the simple form

(15)

This follows directly from the limiting transition

The ratio of diffusion flows changes when 
(a hollow cylinder),:

(16)

where е is the base of our natural logarithms. Com�
pression stress on the internal surface of a hollow cyl�
inder reduces its hydrogen permeability.

In thin claddings, the main contribution to the
change in hydrogen permeability comes from the
change in the diffusion equation due to internal stresses.
With thicker claddings, surface effects (i.e., changes in
the equilibrium concentration of hydrogen atoms due
to compressive or tensile stress) assume the dominant
role. Compressive stresses in the near�surface internal
region reduce the equilibrium concentration of hydro�
gen atoms while tensile stresses increase it.

The mathematical simplicity of the obtained rela�
tions is explained by our model. The change in the sign
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of the sum of internal stresses for the same coordinate
dependence results in differential equations in partial
derivatives for the two correlated coordinate systems.
The logarithmic dependence on the radial coordinates
of the tensor components for stresses of different phys�
ical natures should be especially noted. In the system
of cylindrical coordinates, the logarithmic function is
harmonic and its gradient corresponds to one of the
terms of Laplace operator. With a more complicated
physical model, it is of course nearly impossible to get
an exact analytical solution to the diffusion kinetics
equations. Note that every type of internal stress has its
own characteristic features. 

CONCLUSIONS

The process of controlling internal stresses of dif�
ferent physical natures was studied using mathemati�
cal simulations of the hydrogen permeability of cylin�
drical claddings. The corresponding algorithm
includes the following operations: Determining the
first invariant of internal stress tensor; solving the dif�
fusion kinetics equation; and deriving relations for the
flow of hydrogen atom diffusion through the external
surface of the cladding. By way of illustration, temper�
ature, concentration, and residual stresses were con�
sidered. All of these have a logarithmic dependence on
the radial coordinate. An exact analytical solution of
the diffusion kinetics equations is thus obtained.
Mathematically, the internal stresses are described by
a second order tensor. In a linear space, tensor algebra
rules apply. These allow us to use the superposition
principle in linear theory and add together the tensor

components of the corresponding stresses algebra�
ically. The physical model and its mathematical
description can easily be used in developing computer
algorithms to simulate diffusion processes for complex
coordinate dependences of internal stresses.
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